iqtq1

# Import necessary libraries

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

# Load the dataset

# Replace ‘your_dataset.csv’ with the path to your file

# Ensure that your dataset has continuous numeric features and target variable

data = pd.read_csv(‘your_dataset.csv’)

# efine the features (X) and target (y) variables

# Replace ‘target_column’ with the name of your target variable

X = data.drop(columns=[‘target_column’])

y = data[‘target_column’]

# Split the dataset into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize the Linear Regression model

model = LinearRegression()

# Fill the model to the training data

model.fit(X_train, y_train)

# Predict on the test data

y_pred = model.predict(X_test)

# Calculate Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)

# Print the evaluation metrics

print(“Mean Squared Error (MSE):”, mse)

print(“Root Mean Squared Error (RMSE):”, rmse)

3.

# Import necessary libraries

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report

# Load the dataset

# Replace ‘your_dataset.csv’ with the path to your dataset

data = pd.read_csv(‘your_dataset.csv’)

# Define the features (X) and target (y) variables

# Replace ‘target_column’ with the name of your target column

X = data.drop(columns=[‘target_column’])

y = data[‘target_column’]

# Split the dataset into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize the Naive Bayes model

model = GaussianNB()

# Fit the model to the training data

model.fit(X_train, y_train)

# Predict on the test data

y_pred = model.predict(X_test)

# Evaluate the model

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred, average=’weighted’)

recall = recall_score(y_test, y_pred, average=’weighted’)

f1 = f1_score(y_test, y_pred, average=’weighted’)

# Print the evaluation metrics

print(“Accuracy:”, accuracy)

print(“Precision:”, precision)

print(“Recall:”, recall)

print(“F1-score:”, f1)

# Optional: Print a detailed classification report

print(“\nClassification Report:\n”, classification_report(y_test, y_pred))

5.
# Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report
# Load the dataset
# Replace ‘your_dataset.csv’ with the path to your dataset
data = pd.read_csv(‘your_dataset.csv’)
# Define the features (X) and target (y) variables
# Replace ‘target_column’ with the name of your target column
X = data.drop(columns=[‘target_column’])
y = data[‘target_column’]
# Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize the KNN model
# You can adjust the number of neighbors (k) as needed
k = 5
model = KNeighborsClassifier(n_neighbors=k)
# Fit the model to the training data
model.fit(X_train, y_train)
# Predict on the test data
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average=’weighted’)
recall = recall_score(y_test, y_pred, average=’weighted’)
f1 = f1_score(y_test, y_pred, average=’weighted’)
# Print the evaluation metrics
print(“Accuracy:”, accuracy)
print(“Precision:”, precision)
print(“Recall:”, recall)
print(“F1-score:”, f1)
# Optional: Print a detailed classification report
print(“\nClassification Report:\n”, classification_report(y_test, y_pred))
5.
# Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report
# Load the dataset
# Replace ‘your_dataset.csv’ with the path to your dataset
data = pd.read_csv(‘your_dataset.csv’)
# Define the features (X) and target (y) variables
# Replace ‘target_column’ with the name of your target column
X = data.drop(columns=[‘target_column’])
y = data[‘target_column’]
# Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize the SVM model
# You can specify different kernels (e.g., ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’)
model = SVC(kernel=’rbf’)  # ‘rbf’ kernel is commonly used, but can be adjusted
# Fit the model to the training data
model.fit(X_train, y_train)
# Predict on the test data
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average=’weighted’)
recall = recall_score(y_test, y_pred, average=’weighted’)
f1 = f1_score(y_test, y_pred, average=’weighted’)
# Print the evaluation metrics
print(“Accuracy:”, accuracy)
print(“Precision:”, precision)
print(“Recall:”, recall)
print(“F1-score:”, f1)
# Optional: Print a detailed classification report
print(“\nClassification Report:\n”, classification_report(y_test, y_pred))
6.
# Import necessary libraries
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler
# Load the dataset
# Replace ‘your_dataset.csv’ with the path to your dataset
data = pd.read_csv(‘your_dataset.csv’)
# Optional: Preprocess the data (e.g., scaling features)
scaler = StandardScaler()
X = scaler.fit_transform(data)
# Initialize and fit the K-Means model
# Specify the number of clusters (k); this can be optimized.
k = 3
kmeans = KMeans(n_clusters=k, random_state=42)
# Fit the model to the data
kmeans.fit(X)
# Predict the clusters
cluster_labels = kmeans.labels_
# Evaluate the model using the silhouette score
silhouette_avg = silhouette_score(X, cluster_labels)
print(“Silhouette Score:”, silhouette_avg)
Scroll to Top