
Post to Pdf

Developer By Post to Pdf

Post to Pdf

Developer By Post to Pdf

Post to Pdf

Developer By Post to Pdf

iqtq1aa

Import necessary libraries

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error

Load the dataset

Replace ‘your_dataset.csv’ with the path to your file

Ensure that your dataset has continuous numericfeatures and target
variable

data = pd.read_csv(‘your_dataset.csv’)

efine the features (X) and target (y) variables

Replace ‘target_column’ with the name of yourtarget variable

X = data.drop(columns=[‘target_column’])

y = data[‘target_column’]

Split the dataset into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2,
random_state=42)

Initialize the Linear Regression model

model = LinearRegression()

Fill the model to the training data

model.fit(X_train, y_train)

Predict on the test data

y_pred = model.predict(X_test)

Calculate Mean Squared Error (MSE) and RootMean Squared Error
(RMSE)

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)

Print the evaluation metrics

print(“Mean Squared Error (MSE):”, mse)

print(“Root Mean Squared Error (RMSE):”, rmse)

3.

Import necessary libraries

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score, classification_report

Load the dataset

Replace ‘your_dataset.csv’ with the path to your dataset

data = pd.read_csv(‘your_dataset.csv’)

Define the features (X) and target (y) variables

Replace ‘target_column’ with the name of your target column

X = data.drop(columns=[‘target_column’])

y = data[‘target_column’]

Split the dataset into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

Initialize the Naive Bayes model

model = GaussianNB()

Fit the model to the training data

model.fit(X_train, y_train)

Predict on the test data

y_pred = model.predict(X_test)

Evaluate the model

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred, average=’weighted’)

recall = recall_score(y_test, y_pred, average=’weighted’)

f1 = f1_score(y_test, y_pred, average=’weighted’)

Print the evaluation metrics

print(“Accuracy:”, accuracy)

print(“Precision:”, precision)

print(“Recall:”, recall)

print(“F1-score:”, f1)

Optional: Print a detailed classification report

print(“\nClassification Report:\n”, classification_report(y_test, y_pred))

5.
Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score, classification_report
Load the dataset
Replace ‘your_dataset.csv’ with the path to your dataset
data = pd.read_csv(‘your_dataset.csv’)
Define the features (X) and target (y) variables
Replace ‘target_column’ with the name of your target column
X = data.drop(columns=[‘target_column’])
y = data[‘target_column’]
Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
Initialize the KNN model
You can adjust the number of neighbors (k) as needed
k = 5
model = KNeighborsClassifier(n_neighbors=k)
Fit the model to the training data
model.fit(X_train, y_train)
Predict on the test data
y_pred = model.predict(X_test)
Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average=’weighted’)
recall = recall_score(y_test, y_pred, average=’weighted’)
f1 = f1_score(y_test, y_pred, average=’weighted’)
Print the evaluation metrics
print(“Accuracy:”, accuracy)
print(“Precision:”, precision)
print(“Recall:”, recall)
print(“F1-score:”, f1)
Optional: Print a detailed classification report
print(“\nClassification Report:\n”, classification_report(y_test, y_pred))
5.
Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score, classification_report
Load the dataset
Replace ‘your_dataset.csv’ with the path to your dataset
data = pd.read_csv(‘your_dataset.csv’)
Define the features (X) and target (y) variables
Replace ‘target_column’ with the name of your target column
X = data.drop(columns=[‘target_column’])
y = data[‘target_column’]
Split the dataset into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
Initialize the SVM model
You can specify different kernels (e.g., ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’)
model = SVC(kernel=’rbf’) # ‘rbf’ kernel is commonly used, but can be
adjusted
Fit the model to the training data
model.fit(X_train, y_train)
Predict on the test data
y_pred = model.predict(X_test)
Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average=’weighted’)
recall = recall_score(y_test, y_pred, average=’weighted’)
f1 = f1_score(y_test, y_pred, average=’weighted’)
Print the evaluation metrics
print(“Accuracy:”, accuracy)
print(“Precision:”, precision)
print(“Recall:”, recall)
print(“F1-score:”, f1)
Optional: Print a detailed classification report
print(“\nClassification Report:\n”, classification_report(y_test, y_pred))
6.
Import necessary libraries
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler
Load the dataset
Replace ‘your_dataset.csv’ with the path to your dataset
data = pd.read_csv(‘your_dataset.csv’)
Optional: Preprocess the data (e.g., scaling features)
scaler = StandardScaler()
X = scaler.fit_transform(data)
Initialize and fit the K-Means model
Specify the number of clusters (k); this can be optimized.
k = 3
kmeans = KMeans(n_clusters=k, random_state=42)
Fit the model to the data
kmeans.fit(X)
Predict the clusters
cluster_labels = kmeans.labels_
Evaluate the model using the silhouette score
silhouette_avg = silhouette_score(X, cluster_labels)
print(“Silhouette Score:”, silhouette_avg)
Read More

Post to Pdf

Developer By Post to Pdf

https://justpaste.in/3su-2/

Post to Pdf

Developer By Post to Pdf

